Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bouwman
1
60 kgRivière
2
63 kgMcconvey
5
67 kgTanner
6
76 kgVan Zummeren
7
73 kgStewart
8
71 kgGarcía Cortina
11
77 kgKasperkiewicz
13
71 kgDunne
14
88 kgPeters
15
67 kgMeurisse
16
71 kgvan Zandbeek
17
72 kgLeplingard
20
68 kgCornu
21
66 kgVermeltfoort
22
85 kgLaengen
23
79 kgBol
24
71 kgCalleeuw
26
71 kgvan der Hoorn
27
73 kg
1
60 kgRivière
2
63 kgMcconvey
5
67 kgTanner
6
76 kgVan Zummeren
7
73 kgStewart
8
71 kgGarcía Cortina
11
77 kgKasperkiewicz
13
71 kgDunne
14
88 kgPeters
15
67 kgMeurisse
16
71 kgvan Zandbeek
17
72 kgLeplingard
20
68 kgCornu
21
66 kgVermeltfoort
22
85 kgLaengen
23
79 kgBol
24
71 kgCalleeuw
26
71 kgvan der Hoorn
27
73 kg
Weight (KG) →
Result →
88
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | BOUWMAN Koen | 60 |
2 | RIVIÈRE David | 63 |
5 | MCCONVEY Connor | 67 |
6 | TANNER Jake | 76 |
7 | VAN ZUMMEREN Stef | 73 |
8 | STEWART Thomas | 71 |
11 | GARCÍA CORTINA Iván | 77 |
13 | KASPERKIEWICZ Przemysław | 71 |
14 | DUNNE Conor | 88 |
15 | PETERS Alex | 67 |
16 | MEURISSE Xandro | 71 |
17 | VAN ZANDBEEK Ronan | 72 |
20 | LEPLINGARD Antoine | 68 |
21 | CORNU Jérémy | 66 |
22 | VERMELTFOORT Coen | 85 |
23 | LAENGEN Vegard Stake | 79 |
24 | BOL Jetse | 71 |
26 | CALLEEUW Joeri | 71 |
27 | VAN DER HOORN Taco | 73 |