Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Moncassin
1
73 kgCapelle
6
73 kgSimon
7
70 kgKirsipuu
8
80 kgSeigneur
9
71 kgVan Petegem
10
70 kgDurand
15
76 kgMagnien
16
68 kgDe Clercq
17
66 kgWeltz
19
65 kgDuclos-Lassalle
21
73 kgHundertmarck
23
72 kgArroyo
25
59 kgRous
31
70 kgThijs
32
69 kgHamburger
36
58 kgMoreau
37
77 kg
1
73 kgCapelle
6
73 kgSimon
7
70 kgKirsipuu
8
80 kgSeigneur
9
71 kgVan Petegem
10
70 kgDurand
15
76 kgMagnien
16
68 kgDe Clercq
17
66 kgWeltz
19
65 kgDuclos-Lassalle
21
73 kgHundertmarck
23
72 kgArroyo
25
59 kgRous
31
70 kgThijs
32
69 kgHamburger
36
58 kgMoreau
37
77 kg
Weight (KG) →
Result →
80
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | MONCASSIN Frédéric | 73 |
6 | CAPELLE Christophe | 73 |
7 | SIMON François | 70 |
8 | KIRSIPUU Jaan | 80 |
9 | SEIGNEUR Eddy | 71 |
10 | VAN PETEGEM Peter | 70 |
15 | DURAND Jacky | 76 |
16 | MAGNIEN Emmanuel | 68 |
17 | DE CLERCQ Mario | 66 |
19 | WELTZ Johnny | 65 |
21 | DUCLOS-LASSALLE Gilbert | 73 |
23 | HUNDERTMARCK Kai | 72 |
25 | ARROYO Miguel | 59 |
31 | ROUS Didier | 70 |
32 | THIJS Erwin | 69 |
36 | HAMBURGER Bo | 58 |
37 | MOREAU Francis | 77 |