Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kelderman
1
65 kgPinot
2
63 kgBetancur
3
60 kgReichenbach
4
64 kgPreidler
5
68 kgLudvigsson
6
76 kgNerz
7
67 kgMoser
8
64 kgBennett
9
58 kgOliveira
10
67 kgMeyer
11
68 kgDumoulin
12
69 kgDennis
13
72 kgBravo
14
61 kgLanda
15
61 kgVermote
16
74 kgGoos
17
65 kgBilbao
18
60 kgBrändle
19
80 kgDurbridge
20
78 kg
1
65 kgPinot
2
63 kgBetancur
3
60 kgReichenbach
4
64 kgPreidler
5
68 kgLudvigsson
6
76 kgNerz
7
67 kgMoser
8
64 kgBennett
9
58 kgOliveira
10
67 kgMeyer
11
68 kgDumoulin
12
69 kgDennis
13
72 kgBravo
14
61 kgLanda
15
61 kgVermote
16
74 kgGoos
17
65 kgBilbao
18
60 kgBrändle
19
80 kgDurbridge
20
78 kg
Weight (KG) →
Result →
80
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
2 | PINOT Thibaut | 63 |
3 | BETANCUR Carlos | 60 |
4 | REICHENBACH Sébastien | 64 |
5 | PREIDLER Georg | 68 |
6 | LUDVIGSSON Tobias | 76 |
7 | NERZ Dominik | 67 |
8 | MOSER Moreno | 64 |
9 | BENNETT George | 58 |
10 | OLIVEIRA Nelson | 67 |
11 | MEYER Travis | 68 |
12 | DUMOULIN Tom | 69 |
13 | DENNIS Rohan | 72 |
14 | BRAVO Garikoitz | 61 |
15 | LANDA Mikel | 61 |
16 | VERMOTE Julien | 74 |
17 | GOOS Marc | 65 |
18 | BILBAO Pello | 60 |
19 | BRÄNDLE Matthias | 80 |
20 | DURBRIDGE Luke | 78 |