Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 98
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Marichal
1
72 kgMattan
2
69 kgVerbrugghe
3
70 kgBelohvoščiks
4
70 kgD'Hollander
5
74 kgVan Hyfte
6
70 kgVan de Wouwer
7
66 kgWauters
8
73 kgThijs
9
69 kgAerts
10
68 kgPronk
11
73 kgLefevre
22
66 kgStam
26
64 kgSteels
28
73 kgVerheyen
30
68 kgvan Dijk
43
74 kgBecke
48
75 kgDe Neef
50
75 kg
1
72 kgMattan
2
69 kgVerbrugghe
3
70 kgBelohvoščiks
4
70 kgD'Hollander
5
74 kgVan Hyfte
6
70 kgVan de Wouwer
7
66 kgWauters
8
73 kgThijs
9
69 kgAerts
10
68 kgPronk
11
73 kgLefevre
22
66 kgStam
26
64 kgSteels
28
73 kgVerheyen
30
68 kgvan Dijk
43
74 kgBecke
48
75 kgDe Neef
50
75 kg
Weight (KG) →
Result →
75
64
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | MARICHAL Thierry | 72 |
2 | MATTAN Nico | 69 |
3 | VERBRUGGHE Rik | 70 |
4 | BELOHVOŠČIKS Raivis | 70 |
5 | D'HOLLANDER Glenn | 74 |
6 | VAN HYFTE Paul | 70 |
7 | VAN DE WOUWER Kurt | 66 |
8 | WAUTERS Marc | 73 |
9 | THIJS Erwin | 69 |
10 | AERTS Mario | 68 |
11 | PRONK Matthé | 73 |
22 | LEFEVRE David | 66 |
26 | STAM Danny | 64 |
28 | STEELS Tom | 73 |
30 | VERHEYEN Geert | 68 |
43 | VAN DIJK Stefan | 74 |
48 | BECKE Daniel | 75 |
50 | DE NEEF Steven | 75 |