Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Pardilla
1
65 kgHerrada
2
65 kgKreder
5
67 kgCazaux
6
59 kgLebas
8
65 kgQuéméneur
10
67 kgDockx
14
64 kgGroenendaal
15
66 kgBakelants
18
67 kgHegreberg
19
72 kgKvist
22
68 kgde la Parte
34
64 kgGhyselinck
41
74 kgvan Amerongen
48
70 kgPeyroton-Dartet
51
65 kgPrades
53
56 kgTurgot
59
73 kg
1
65 kgHerrada
2
65 kgKreder
5
67 kgCazaux
6
59 kgLebas
8
65 kgQuéméneur
10
67 kgDockx
14
64 kgGroenendaal
15
66 kgBakelants
18
67 kgHegreberg
19
72 kgKvist
22
68 kgde la Parte
34
64 kgGhyselinck
41
74 kgvan Amerongen
48
70 kgPeyroton-Dartet
51
65 kgPrades
53
56 kgTurgot
59
73 kg
Weight (KG) →
Result →
74
56
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | PARDILLA Sergio | 65 |
2 | HERRADA José | 65 |
5 | KREDER Michel | 67 |
6 | CAZAUX Pierre | 59 |
8 | LEBAS Thomas | 65 |
10 | QUÉMÉNEUR Perrig | 67 |
14 | DOCKX Gert | 64 |
15 | GROENENDAAL Richard | 66 |
18 | BAKELANTS Jan | 67 |
19 | HEGREBERG Morten | 72 |
22 | KVIST Thomas Vedel | 68 |
34 | DE LA PARTE Víctor | 64 |
41 | GHYSELINCK Jan | 74 |
48 | VAN AMERONGEN Thijs | 70 |
51 | PEYROTON-DARTET Thomas | 65 |
53 | PRADES Benjamín | 56 |
59 | TURGOT Sébastien | 73 |