Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Quéméneur
2
67 kgJodts
7
74 kgPardilla
11
65 kgDockx
12
64 kgHerrada
15
65 kgHegreberg
24
72 kgKvist
26
68 kgCazaux
27
59 kgKreder
30
67 kgvan Amerongen
31
70 kgGhyselinck
34
74 kgLebas
36
65 kgSokolov
41
70 kgCosme
45
61 kgde la Parte
47
64 kgBakelants
54
67 kgTurgot
59
73 kgGroenendaal
64
66 kgPrades
69
56 kgPeyroton-Dartet
77
65 kg
2
67 kgJodts
7
74 kgPardilla
11
65 kgDockx
12
64 kgHerrada
15
65 kgHegreberg
24
72 kgKvist
26
68 kgCazaux
27
59 kgKreder
30
67 kgvan Amerongen
31
70 kgGhyselinck
34
74 kgLebas
36
65 kgSokolov
41
70 kgCosme
45
61 kgde la Parte
47
64 kgBakelants
54
67 kgTurgot
59
73 kgGroenendaal
64
66 kgPrades
69
56 kgPeyroton-Dartet
77
65 kg
Weight (KG) →
Result →
74
56
2
77
# | Rider | Weight (KG) |
---|---|---|
2 | QUÉMÉNEUR Perrig | 67 |
7 | JODTS Sven | 74 |
11 | PARDILLA Sergio | 65 |
12 | DOCKX Gert | 64 |
15 | HERRADA José | 65 |
24 | HEGREBERG Morten | 72 |
26 | KVIST Thomas Vedel | 68 |
27 | CAZAUX Pierre | 59 |
30 | KREDER Michel | 67 |
31 | VAN AMERONGEN Thijs | 70 |
34 | GHYSELINCK Jan | 74 |
36 | LEBAS Thomas | 65 |
41 | SOKOLOV Evgeny | 70 |
45 | COSME Antonio | 61 |
47 | DE LA PARTE Víctor | 64 |
54 | BAKELANTS Jan | 67 |
59 | TURGOT Sébastien | 73 |
64 | GROENENDAAL Richard | 66 |
69 | PRADES Benjamín | 56 |
77 | PEYROTON-DARTET Thomas | 65 |