Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Evans
1
64 kgD'Hollander
3
74 kgNardello
5
74 kgVogondy
8
62 kgKirsipuu
9
80 kgO'Grady
10
73 kgRogers
11
74 kgJonker
12
69 kgKnaven
13
68 kgVan Hyfte
14
70 kgGuesdon
15
73 kgHundertmarck
16
72 kgDe Clercq
17
80 kgLudewig
18
75 kgBotcharov
19
54 kgLoder
20
62 kgSacchi
21
68 kg
1
64 kgD'Hollander
3
74 kgNardello
5
74 kgVogondy
8
62 kgKirsipuu
9
80 kgO'Grady
10
73 kgRogers
11
74 kgJonker
12
69 kgKnaven
13
68 kgVan Hyfte
14
70 kgGuesdon
15
73 kgHundertmarck
16
72 kgDe Clercq
17
80 kgLudewig
18
75 kgBotcharov
19
54 kgLoder
20
62 kgSacchi
21
68 kg
Weight (KG) →
Result →
80
54
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | EVANS Cadel | 64 |
3 | D'HOLLANDER Glenn | 74 |
5 | NARDELLO Daniele | 74 |
8 | VOGONDY Nicolas | 62 |
9 | KIRSIPUU Jaan | 80 |
10 | O'GRADY Stuart | 73 |
11 | ROGERS Michael | 74 |
12 | JONKER Patrick | 69 |
13 | KNAVEN Servais | 68 |
14 | VAN HYFTE Paul | 70 |
15 | GUESDON Frédéric | 73 |
16 | HUNDERTMARCK Kai | 72 |
17 | DE CLERCQ Hans | 80 |
18 | LUDEWIG Jörg | 75 |
19 | BOTCHAROV Alexandre | 54 |
20 | LODER Thierry | 62 |
21 | SACCHI Fabio | 68 |