Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Verraes
2
73 kgReinhardt
6
72 kgDillier
8
75 kgClain
11
59 kgFirsanov
15
58 kgDumoulin
17
69 kgBreen
19
74 kgPérichon
21
69 kgPorsev
22
80 kgVandousselaere
24
71 kgBelgy
25
68 kgTeychenne
31
68 kgSolomennikov
32
72 kgNovikov
33
77 kgDupont
52
72 kgVilla
53
71 kgBarle
54
72 kgMironov
63
68 kgPatanchon
67
69 kgDe Neef
70
75 kgSchets
87
74 kgAhlstrand
89
72 kgSanchez
98
75 kg
2
73 kgReinhardt
6
72 kgDillier
8
75 kgClain
11
59 kgFirsanov
15
58 kgDumoulin
17
69 kgBreen
19
74 kgPérichon
21
69 kgPorsev
22
80 kgVandousselaere
24
71 kgBelgy
25
68 kgTeychenne
31
68 kgSolomennikov
32
72 kgNovikov
33
77 kgDupont
52
72 kgVilla
53
71 kgBarle
54
72 kgMironov
63
68 kgPatanchon
67
69 kgDe Neef
70
75 kgSchets
87
74 kgAhlstrand
89
72 kgSanchez
98
75 kg
Weight (KG) →
Result →
80
58
2
98
# | Rider | Weight (KG) |
---|---|---|
2 | VERRAES Benjamin | 73 |
6 | REINHARDT Theo | 72 |
8 | DILLIER Silvan | 75 |
11 | CLAIN Médéric | 59 |
15 | FIRSANOV Sergey | 58 |
17 | DUMOULIN Tom | 69 |
19 | BREEN Vegard | 74 |
21 | PÉRICHON Pierre-Luc | 69 |
22 | PORSEV Alexander | 80 |
24 | VANDOUSSELAERE Sven | 71 |
25 | BELGY Julien | 68 |
31 | TEYCHENNE Mathieu | 68 |
32 | SOLOMENNIKOV Andrei | 72 |
33 | NOVIKOV Nikita | 77 |
52 | DUPONT Timothy | 72 |
53 | VILLA Romain | 71 |
54 | BARLE Florent | 72 |
63 | MIRONOV Alexander | 68 |
67 | PATANCHON Fabien | 69 |
70 | DE NEEF Steven | 75 |
87 | SCHETS Steve | 74 |
89 | AHLSTRAND Jonas | 72 |
98 | SANCHEZ Fabien | 75 |