Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Girdlestone
1
64 kgInkelaar
2
64 kgDoleatto
7
61 kgDelettre
9
62 kgGuglielmi
10
66 kgHuys
13
61 kgMoniquet
17
61 kgMortier
19
66 kgReynaerts
24
67 kgFiné
29
70 kgTasset
32
63 kgBrenans
33
63 kgVandebosch
34
76 kgOffermans
43
63 kgPestiaux
46
58 kgCasanovas
49
58 kgCordeiro
51
65 kgHenn
52
64 kg
1
64 kgInkelaar
2
64 kgDoleatto
7
61 kgDelettre
9
62 kgGuglielmi
10
66 kgHuys
13
61 kgMoniquet
17
61 kgMortier
19
66 kgReynaerts
24
67 kgFiné
29
70 kgTasset
32
63 kgBrenans
33
63 kgVandebosch
34
76 kgOffermans
43
63 kgPestiaux
46
58 kgCasanovas
49
58 kgCordeiro
51
65 kgHenn
52
64 kg
Weight (KG) →
Result →
76
58
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | GIRDLESTONE Keagan | 64 |
2 | INKELAAR Kevin | 64 |
7 | DOLEATTO Aurélien | 61 |
9 | DELETTRE Alexandre | 62 |
10 | GUGLIELMI Simon | 66 |
13 | HUYS Laurens | 61 |
17 | MONIQUET Sylvain | 61 |
19 | MORTIER Julien | 66 |
24 | REYNAERTS Jan | 67 |
29 | FINÉ Eddy | 70 |
32 | TASSET Marvin | 63 |
33 | BRENANS Emile | 63 |
34 | VANDEBOSCH Victor | 76 |
43 | OFFERMANS Michiel | 63 |
46 | PESTIAUX Yann | 58 |
49 | CASANOVAS David | 58 |
51 | CORDEIRO Damien | 65 |
52 | HENN Luca | 64 |