Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 68
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
van Empel
2
64 kgSchönberger
3
64 kgFortunato
4
57 kgRinaldi
5
65 kgBarać
6
73 kgZandomeneghi
8
61 kgSefa
10
72 kgFerrari
13
64 kgBertone
14
64 kgZambelli
18
70 kgBevilacqua
24
75 kgVan Nuffelen
25
64 kgSartori
35
68 kgBaldo
42
64 kgZhupa
46
78 kgDubois
48
65 kgVelia
49
74 kg
2
64 kgSchönberger
3
64 kgFortunato
4
57 kgRinaldi
5
65 kgBarać
6
73 kgZandomeneghi
8
61 kgSefa
10
72 kgFerrari
13
64 kgBertone
14
64 kgZambelli
18
70 kgBevilacqua
24
75 kgVan Nuffelen
25
64 kgSartori
35
68 kgBaldo
42
64 kgZhupa
46
78 kgDubois
48
65 kgVelia
49
74 kg
Weight (KG) →
Result →
78
57
2
49
# | Rider | Weight (KG) |
---|---|---|
2 | VAN EMPEL Etienne | 64 |
3 | SCHÖNBERGER Sebastian | 64 |
4 | FORTUNATO Lorenzo | 57 |
5 | RINALDI Nicholas | 65 |
6 | BARAĆ Antonio | 73 |
8 | ZANDOMENEGHI Simone | 61 |
10 | SEFA Ylber | 72 |
13 | FERRARI Andrea | 64 |
14 | BERTONE Filippo | 64 |
18 | ZAMBELLI Samuele | 70 |
24 | BEVILACQUA Simone | 75 |
25 | VAN NUFFELEN Glen | 64 |
35 | SARTORI Mirco | 68 |
42 | BALDO Mattia | 64 |
46 | ZHUPA Eugert | 78 |
48 | DUBOIS Foeke | 65 |
49 | VELIA Olsian | 74 |