Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Stosz
1
70 kgGabburo
2
63 kgVlasov
3
68 kgCelano
4
65 kgNatarov
5
68 kgCherkasov
6
68 kgDe Rossi
7
70 kgEyob
9
61 kgMazuki
11
57 kgKuzmin
12
66 kgStalnov
13
63 kgFortunato
14
57 kgOvechkin
15
61 kgGrabis
16
75 kgKurianov
19
74 kgGruzdev
21
78 kgDyball
22
63 kgGidich
24
69 kg
1
70 kgGabburo
2
63 kgVlasov
3
68 kgCelano
4
65 kgNatarov
5
68 kgCherkasov
6
68 kgDe Rossi
7
70 kgEyob
9
61 kgMazuki
11
57 kgKuzmin
12
66 kgStalnov
13
63 kgFortunato
14
57 kgOvechkin
15
61 kgGrabis
16
75 kgKurianov
19
74 kgGruzdev
21
78 kgDyball
22
63 kgGidich
24
69 kg
Weight (KG) →
Result →
78
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | STOSZ Patryk | 70 |
2 | GABBURO Davide | 63 |
3 | VLASOV Aleksandr | 68 |
4 | CELANO Danilo | 65 |
5 | NATAROV Yuriy | 68 |
6 | CHERKASOV Nikolay | 68 |
7 | DE ROSSI Lucas | 70 |
9 | EYOB Metkel | 61 |
11 | MAZUKI Nur Amirul Fakhruddin | 57 |
12 | KUZMIN Anton | 66 |
13 | STALNOV Nikita | 63 |
14 | FORTUNATO Lorenzo | 57 |
15 | OVECHKIN Artem | 61 |
16 | GRABIS Mateusz | 75 |
19 | KURIANOV Stepan | 74 |
21 | GRUZDEV Dmitriy | 78 |
22 | DYBALL Benjamin | 63 |
24 | GIDICH Yevgeniy | 69 |