Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Van Rooy
1
70 kgVermeersch
2
68 kgZoidl
3
63 kgLonardi
4
70 kgMerlier
5
76 kgRäim
6
69 kgFortin
7
78 kgBadilatti
8
62 kgKump
9
68 kgMadsen
10
67 kgPer
11
81 kgButs
12
68 kgTaminiaux
14
74 kgStedman
15
54 kgCarstensen
16
69 kgFancellu
17
62 kgZurlo
18
70 kgHaller
19
68 kgDe Poorter
20
68 kgTennant
21
82 kgTulett
23
56 kgKierner
24
79 kgTownsend
25
73 kgGuardini
27
66 kg
1
70 kgVermeersch
2
68 kgZoidl
3
63 kgLonardi
4
70 kgMerlier
5
76 kgRäim
6
69 kgFortin
7
78 kgBadilatti
8
62 kgKump
9
68 kgMadsen
10
67 kgPer
11
81 kgButs
12
68 kgTaminiaux
14
74 kgStedman
15
54 kgCarstensen
16
69 kgFancellu
17
62 kgZurlo
18
70 kgHaller
19
68 kgDe Poorter
20
68 kgTennant
21
82 kgTulett
23
56 kgKierner
24
79 kgTownsend
25
73 kgGuardini
27
66 kg
Weight (KG) →
Result →
82
54
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VAN ROOY Kenneth | 70 |
2 | VERMEERSCH Gianni | 68 |
3 | ZOIDL Riccardo | 63 |
4 | LONARDI Giovanni | 70 |
5 | MERLIER Tim | 76 |
6 | RÄIM Mihkel | 69 |
7 | FORTIN Filippo | 78 |
8 | BADILATTI Matteo | 62 |
9 | KUMP Marko | 68 |
10 | MADSEN Martin Toft | 67 |
11 | PER David | 81 |
12 | BUTS Vitaliy | 68 |
14 | TAMINIAUX Lionel | 74 |
15 | STEDMAN Maximilian | 54 |
16 | CARSTENSEN Lucas | 69 |
17 | FANCELLU Alessandro | 62 |
18 | ZURLO Federico | 70 |
19 | HALLER Patrick | 68 |
20 | DE POORTER Maxime | 68 |
21 | TENNANT Andrew | 82 |
23 | TULETT Ben | 56 |
24 | KIERNER Florian | 79 |
25 | TOWNSEND Rory | 73 |
27 | GUARDINI Andrea | 66 |