Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Imboden
3
70 kgHeppner
5
69 kgSunderland
7
65 kgvan der Poel
10
70 kgHolm Sørensen
11
77 kgBölts
12
73 kgBaguet
14
67 kgMuseeuw
15
71 kgHundertmarck
16
72 kgHamburger
17
58 kgArroyo
23
59 kgAldag
26
75 kgBramati
27
72 kgYates
34
74 kgAndreu
35
77 kgVerstrepen
39
66 kgVirenque
41
65 kgFarazijn
46
69 kg
3
70 kgHeppner
5
69 kgSunderland
7
65 kgvan der Poel
10
70 kgHolm Sørensen
11
77 kgBölts
12
73 kgBaguet
14
67 kgMuseeuw
15
71 kgHundertmarck
16
72 kgHamburger
17
58 kgArroyo
23
59 kgAldag
26
75 kgBramati
27
72 kgYates
34
74 kgAndreu
35
77 kgVerstrepen
39
66 kgVirenque
41
65 kgFarazijn
46
69 kg
Weight (KG) →
Result →
77
58
3
46
# | Rider | Weight (KG) |
---|---|---|
3 | IMBODEN Heinz | 70 |
5 | HEPPNER Jens | 69 |
7 | SUNDERLAND Scott | 65 |
10 | VAN DER POEL Adrie | 70 |
11 | HOLM SØRENSEN Brian | 77 |
12 | BÖLTS Udo | 73 |
14 | BAGUET Serge | 67 |
15 | MUSEEUW Johan | 71 |
16 | HUNDERTMARCK Kai | 72 |
17 | HAMBURGER Bo | 58 |
23 | ARROYO Miguel | 59 |
26 | ALDAG Rolf | 75 |
27 | BRAMATI Davide | 72 |
34 | YATES Sean | 74 |
35 | ANDREU Frankie | 77 |
39 | VERSTREPEN Johan | 66 |
41 | VIRENQUE Richard | 65 |
46 | FARAZIJN Peter | 69 |