Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Zoidl
1
63 kgBoem
2
75 kgOvechkin
3
61 kgKvasina
4
72 kgde la Parte
5
64 kgHansen
6
60 kgTonelli
7
64 kgDe Mesmaeker
8
68 kgRogina
9
70 kgDavies
10
66 kgNovak
11
70 kgEibegger
12
68 kgde Greef
13
65 kgGroßschartner
14
64 kgCordeel
16
80 kgTheuns
17
72 kgČerný
18
75 kgBoivin
19
78 kgStachowiak
20
62 kgBiałobłocki
21
79 kg
1
63 kgBoem
2
75 kgOvechkin
3
61 kgKvasina
4
72 kgde la Parte
5
64 kgHansen
6
60 kgTonelli
7
64 kgDe Mesmaeker
8
68 kgRogina
9
70 kgDavies
10
66 kgNovak
11
70 kgEibegger
12
68 kgde Greef
13
65 kgGroßschartner
14
64 kgCordeel
16
80 kgTheuns
17
72 kgČerný
18
75 kgBoivin
19
78 kgStachowiak
20
62 kgBiałobłocki
21
79 kg
Weight (KG) →
Result →
80
60
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ZOIDL Riccardo | 63 |
2 | BOEM Nicola | 75 |
3 | OVECHKIN Artem | 61 |
4 | KVASINA Matija | 72 |
5 | DE LA PARTE Víctor | 64 |
6 | HANSEN Jesper | 60 |
7 | TONELLI Alessandro | 64 |
8 | DE MESMAEKER Kevin | 68 |
9 | ROGINA Radoslav | 70 |
10 | DAVIES Scott | 66 |
11 | NOVAK Domen | 70 |
12 | EIBEGGER Markus | 68 |
13 | DE GREEF Robbert | 65 |
14 | GROßSCHARTNER Felix | 64 |
16 | CORDEEL Sander | 80 |
17 | THEUNS Edward | 72 |
18 | ČERNÝ Josef | 75 |
19 | BOIVIN Guillaume | 78 |
20 | STACHOWIAK Adam | 62 |
21 | BIAŁOBŁOCKI Marcin | 79 |