Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Yates
1
58 kgZoidl
2
63 kgNovak
3
70 kgde la Parte
4
64 kgVillella
5
66 kgHill
6
67 kgEarle
8
70 kgGuerin
10
64 kgRolland
11
70 kgTratnik
12
67 kgCataford
13
70 kgGamper
14
80 kgNolde
15
79 kgHrinkow
16
61 kgFinetto
17
62 kgBadilatti
18
62 kgKrizek
19
74 kgLehner
20
63 kgRivi
21
72 kgPacher
22
62 kgMoreno
23
63 kgKrul
24
68 kgEdmondson
25
75 kgMandrysch
26
73 kg
1
58 kgZoidl
2
63 kgNovak
3
70 kgde la Parte
4
64 kgVillella
5
66 kgHill
6
67 kgEarle
8
70 kgGuerin
10
64 kgRolland
11
70 kgTratnik
12
67 kgCataford
13
70 kgGamper
14
80 kgNolde
15
79 kgHrinkow
16
61 kgFinetto
17
62 kgBadilatti
18
62 kgKrizek
19
74 kgLehner
20
63 kgRivi
21
72 kgPacher
22
62 kgMoreno
23
63 kgKrul
24
68 kgEdmondson
25
75 kgMandrysch
26
73 kg
Weight (KG) →
Result →
80
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | YATES Adam | 58 |
2 | ZOIDL Riccardo | 63 |
3 | NOVAK Domen | 70 |
4 | DE LA PARTE Víctor | 64 |
5 | VILLELLA Davide | 66 |
6 | HILL Benjamin | 67 |
8 | EARLE Nathan | 70 |
10 | GUERIN Alexis | 64 |
11 | ROLLAND Pierre | 70 |
12 | TRATNIK Jan | 67 |
13 | CATAFORD Alexander | 70 |
14 | GAMPER Patrick | 80 |
15 | NOLDE Tobias | 79 |
16 | HRINKOW Dominik | 61 |
17 | FINETTO Mauro | 62 |
18 | BADILATTI Matteo | 62 |
19 | KRIZEK Matthias | 74 |
20 | LEHNER Daniel | 63 |
21 | RIVI Samuele | 72 |
22 | PACHER Quentin | 62 |
23 | MORENO Javier | 63 |
24 | KRUL Stef | 68 |
25 | EDMONDSON Alex | 75 |
26 | MANDRYSCH John | 73 |