Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Räim
1
69 kgPeron
2
70 kgBarbier
3
79 kgPodlaski
4
68 kgMaikin
5
68 kgPaterski
6
73 kgPruus
7
71 kgBárta
8
79 kgLindgren
9
72.5 kgÄrm
10
75 kgVahtra
11
85 kgKaraliok
12
75 kgBogusławski
13
77 kgLašinis
14
69 kgSykala
15
72 kgSaramotins
16
75 kgBrand
18
76 kgPlanet
19
71 kgGonov
20
76 kg
1
69 kgPeron
2
70 kgBarbier
3
79 kgPodlaski
4
68 kgMaikin
5
68 kgPaterski
6
73 kgPruus
7
71 kgBárta
8
79 kgLindgren
9
72.5 kgÄrm
10
75 kgVahtra
11
85 kgKaraliok
12
75 kgBogusławski
13
77 kgLašinis
14
69 kgSykala
15
72 kgSaramotins
16
75 kgBrand
18
76 kgPlanet
19
71 kgGonov
20
76 kg
Weight (KG) →
Result →
85
68
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | RÄIM Mihkel | 69 |
2 | PERON Andrea | 70 |
3 | BARBIER Rudy | 79 |
4 | PODLASKI Michał | 68 |
5 | MAIKIN Roman | 68 |
6 | PATERSKI Maciej | 73 |
7 | PRUUS Peeter | 71 |
8 | BÁRTA Tomáš | 79 |
9 | LINDGREN Emil | 72.5 |
10 | ÄRM Rait | 75 |
11 | VAHTRA Norman | 85 |
12 | KARALIOK Yauheni | 75 |
13 | BOGUSŁAWSKI Marceli | 77 |
14 | LAŠINIS Venantas | 69 |
15 | SYKALA Wojciech | 72 |
16 | SARAMOTINS Aleksejs | 75 |
18 | BRAND Sam | 76 |
19 | PLANET Charles | 71 |
20 | GONOV Lev | 76 |