Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 34
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Kelderman
1
65 kgRasmussen
4
58 kgWilmann
5
69 kgvan der Lijke
9
61 kgCamaño
12
68 kgBauer
13
74 kgKvist
14
68 kgMcCarthy
16
63 kgLaengen
20
79 kgBommel
25
75 kgBiałobłocki
26
79 kgSchoonbroodt
27
78 kgGroen
32
70.5 kgAnderson
35
68 kgJørgensen
36
60 kgSerov
38
77 kgWetterhall
47
70 kgReihs
49
75 kgBreen
63
74 kgMcEvoy
67
67 kgFurlan
68
72 kgAsselman
74
69 kg
1
65 kgRasmussen
4
58 kgWilmann
5
69 kgvan der Lijke
9
61 kgCamaño
12
68 kgBauer
13
74 kgKvist
14
68 kgMcCarthy
16
63 kgLaengen
20
79 kgBommel
25
75 kgBiałobłocki
26
79 kgSchoonbroodt
27
78 kgGroen
32
70.5 kgAnderson
35
68 kgJørgensen
36
60 kgSerov
38
77 kgWetterhall
47
70 kgReihs
49
75 kgBreen
63
74 kgMcEvoy
67
67 kgFurlan
68
72 kgAsselman
74
69 kg
Weight (KG) →
Result →
79
58
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
4 | RASMUSSEN Michael | 58 |
5 | WILMANN Frederik | 69 |
9 | VAN DER LIJKE Nick | 61 |
12 | CAMAÑO Iker | 68 |
13 | BAUER Jack | 74 |
14 | KVIST Thomas Vedel | 68 |
16 | MCCARTHY Jay | 63 |
20 | LAENGEN Vegard Stake | 79 |
25 | BOMMEL Henning | 75 |
26 | BIAŁOBŁOCKI Marcin | 79 |
27 | SCHOONBROODT Bob | 78 |
32 | GROEN Ike | 70.5 |
35 | ANDERSON Jack | 68 |
36 | JØRGENSEN René | 60 |
38 | SEROV Alexander | 77 |
47 | WETTERHALL Alexander | 70 |
49 | REIHS Michael | 75 |
63 | BREEN Vegard | 74 |
67 | MCEVOY Jonathan | 67 |
68 | FURLAN Angelo | 72 |
74 | ASSELMAN Jesper | 69 |