Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Cancellara
1
80 kgStreel
2
69 kgRogers
3
74 kgNewton
4
69 kgSandstød
5
74 kgSinkewitz
6
63 kgArvesen
7
74 kgBäckstedt
8
94 kgLjungqvist
11
73 kgRoesems
12
81 kgBonča
14
63 kgMahorič
16
68 kgJohansen
19
78 kgGlasner
21
72 kgWacker
23
65 kgFerrari
30
74 kgLupeikis
32
80 kgRittsel
33
70 kgDavis
38
73 kgPoitschke
41
73 kgRogina
46
70 kgCalcagni
49
65 kg
1
80 kgStreel
2
69 kgRogers
3
74 kgNewton
4
69 kgSandstød
5
74 kgSinkewitz
6
63 kgArvesen
7
74 kgBäckstedt
8
94 kgLjungqvist
11
73 kgRoesems
12
81 kgBonča
14
63 kgMahorič
16
68 kgJohansen
19
78 kgGlasner
21
72 kgWacker
23
65 kgFerrari
30
74 kgLupeikis
32
80 kgRittsel
33
70 kgDavis
38
73 kgPoitschke
41
73 kgRogina
46
70 kgCalcagni
49
65 kg
Weight (KG) →
Result →
94
63
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | CANCELLARA Fabian | 80 |
2 | STREEL Marc | 69 |
3 | ROGERS Michael | 74 |
4 | NEWTON Christopher | 69 |
5 | SANDSTØD Michael | 74 |
6 | SINKEWITZ Patrik | 63 |
7 | ARVESEN Kurt-Asle | 74 |
8 | BÄCKSTEDT Magnus | 94 |
11 | LJUNGQVIST Marcus | 73 |
12 | ROESEMS Bert | 81 |
14 | BONČA Valter | 63 |
16 | MAHORIČ Mitja | 68 |
19 | JOHANSEN Allan | 78 |
21 | GLASNER Björn | 72 |
23 | WACKER Eugen | 65 |
30 | FERRARI Diego | 74 |
32 | LUPEIKIS Remigius | 80 |
33 | RITTSEL Martin | 70 |
38 | DAVIS Allan | 73 |
41 | POITSCHKE Enrico | 73 |
46 | ROGINA Radoslav | 70 |
49 | CALCAGNI Patrick | 65 |