Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Bernal
1
60 kgMoscon
2
71 kgRota
3
62 kgRučigaj
4
68 kgPolitt
5
80 kgMohorič
6
71 kgPer
8
81 kgMühlberger
9
64 kgVelasco
10
59 kgPer
12
68 kgSipos
13
65 kgZakarin
15
65 kgGrošelj
16
70 kgKatrašnik
17
69 kgZurlo
18
70 kgBaška
19
74 kgPeters
21
67 kgŠtibingr
26
62 kgFinkšt
29
70 kgLichnovský
30
76 kg
1
60 kgMoscon
2
71 kgRota
3
62 kgRučigaj
4
68 kgPolitt
5
80 kgMohorič
6
71 kgPer
8
81 kgMühlberger
9
64 kgVelasco
10
59 kgPer
12
68 kgSipos
13
65 kgZakarin
15
65 kgGrošelj
16
70 kgKatrašnik
17
69 kgZurlo
18
70 kgBaška
19
74 kgPeters
21
67 kgŠtibingr
26
62 kgFinkšt
29
70 kgLichnovský
30
76 kg
Weight (KG) →
Result →
81
59
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | BERNAL Egan | 60 |
2 | MOSCON Gianni | 71 |
3 | ROTA Lorenzo | 62 |
4 | RUČIGAJ Žiga | 68 |
5 | POLITT Nils | 80 |
6 | MOHORIČ Matej | 71 |
8 | PER David | 81 |
9 | MÜHLBERGER Gregor | 64 |
10 | VELASCO Simone | 59 |
12 | PER Gorazd | 68 |
13 | SIPOS Marek | 65 |
15 | ZAKARIN Aydar | 65 |
16 | GROŠELJ Matic | 70 |
17 | KATRAŠNIK Gašper | 69 |
18 | ZURLO Federico | 70 |
19 | BAŠKA Erik | 74 |
21 | PETERS Alex | 67 |
26 | ŠTIBINGR Matěj | 62 |
29 | FINKŠT Tilen | 70 |
30 | LICHNOVSKÝ Luděk | 76 |