Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Mancebo
1
64 kgParker
2
65 kgMorton
3
62 kgHowes
4
61 kgDombrowski
6
68 kgChadwick
8
75 kgDay
10
68 kgBennett
12
58 kgHaga
18
71.5 kgHuffman
19
71 kgGaimon
32
67 kgFreiberg
36
82 kgThomson
45
75 kgSummerhill
51
70 kgNorthey
55
69 kgGudsell
56
77 kgWohlberg
60
63 kgRathe
65
74 kgWalker
66
63 kgZirbel
67
91 kg
1
64 kgParker
2
65 kgMorton
3
62 kgHowes
4
61 kgDombrowski
6
68 kgChadwick
8
75 kgDay
10
68 kgBennett
12
58 kgHaga
18
71.5 kgHuffman
19
71 kgGaimon
32
67 kgFreiberg
36
82 kgThomson
45
75 kgSummerhill
51
70 kgNorthey
55
69 kgGudsell
56
77 kgWohlberg
60
63 kgRathe
65
74 kgWalker
66
63 kgZirbel
67
91 kg
Weight (KG) →
Result →
91
58
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | MANCEBO Francisco | 64 |
2 | PARKER Dale | 65 |
3 | MORTON Lachlan | 62 |
4 | HOWES Alex | 61 |
6 | DOMBROWSKI Joe | 68 |
8 | CHADWICK Glen Alan | 75 |
10 | DAY Benjamin | 68 |
12 | BENNETT George | 58 |
18 | HAGA Chad | 71.5 |
19 | HUFFMAN Evan | 71 |
32 | GAIMON Phillip | 67 |
36 | FREIBERG Michael | 82 |
45 | THOMSON Jay Robert | 75 |
51 | SUMMERHILL Daniel | 70 |
55 | NORTHEY Michael James | 69 |
56 | GUDSELL Timothy | 77 |
60 | WOHLBERG Eric | 63 |
65 | RATHE Jacob | 74 |
66 | WALKER Johnnie | 63 |
67 | ZIRBEL Tom | 91 |