Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 33
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Brambilla
3
57 kgKump
4
68 kgPaterski
6
73 kgBusato
7
67 kgMahorič
8
68 kgVrečer
10
68 kgBoem
12
75 kgSagan
18
78 kgTratnik
21
67 kgModolo
24
67 kgDowsett
32
75 kgPapok
33
76 kgPasqualon
37
75 kgBerdos
39
68 kgZardini
40
62 kgCimolai
41
70 kgSantoro
42
53 kgKrizek
49
74 kgOwsian
50
66 kgSagan
52
65 kgRowe
55
72 kgMarin
57
67 kgMurn
59
70 kg
3
57 kgKump
4
68 kgPaterski
6
73 kgBusato
7
67 kgMahorič
8
68 kgVrečer
10
68 kgBoem
12
75 kgSagan
18
78 kgTratnik
21
67 kgModolo
24
67 kgDowsett
32
75 kgPapok
33
76 kgPasqualon
37
75 kgBerdos
39
68 kgZardini
40
62 kgCimolai
41
70 kgSantoro
42
53 kgKrizek
49
74 kgOwsian
50
66 kgSagan
52
65 kgRowe
55
72 kgMarin
57
67 kgMurn
59
70 kg
Weight (KG) →
Result →
78
53
3
59
# | Rider | Weight (KG) |
---|---|---|
3 | BRAMBILLA Gianluca | 57 |
4 | KUMP Marko | 68 |
6 | PATERSKI Maciej | 73 |
7 | BUSATO Matteo | 67 |
8 | MAHORIČ Mitja | 68 |
10 | VREČER Robert | 68 |
12 | BOEM Nicola | 75 |
18 | SAGAN Peter | 78 |
21 | TRATNIK Jan | 67 |
24 | MODOLO Sacha | 67 |
32 | DOWSETT Alex | 75 |
33 | PAPOK Siarhei | 76 |
37 | PASQUALON Andrea | 75 |
39 | BERDOS Oleg | 68 |
40 | ZARDINI Edoardo | 62 |
41 | CIMOLAI Davide | 70 |
42 | SANTORO Antonio | 53 |
49 | KRIZEK Matthias | 74 |
50 | OWSIAN Łukasz | 66 |
52 | SAGAN Juraj | 65 |
55 | ROWE Luke | 72 |
57 | MARIN Matej | 67 |
59 | MURN Uroš | 70 |