Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Morton
1
62 kgCraddock
2
69 kgBennett
3
58 kgOram
5
68 kgHansen
6
60 kgWarbasse
7
67 kgLudvigsson
8
76 kgSagan
9
78 kgVillella
10
66 kgHenttala
11
73 kgHoller
12
58 kgBoswell
13
70 kgDuchesne
14
75 kgPutt
16
75 kgDennis
17
72 kgLemus
18
61 kgBrown
19
65 kgDe Mesmaeker
22
68 kg
1
62 kgCraddock
2
69 kgBennett
3
58 kgOram
5
68 kgHansen
6
60 kgWarbasse
7
67 kgLudvigsson
8
76 kgSagan
9
78 kgVillella
10
66 kgHenttala
11
73 kgHoller
12
58 kgBoswell
13
70 kgDuchesne
14
75 kgPutt
16
75 kgDennis
17
72 kgLemus
18
61 kgBrown
19
65 kgDe Mesmaeker
22
68 kg
Weight (KG) →
Result →
78
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MORTON Lachlan | 62 |
2 | CRADDOCK Lawson | 69 |
3 | BENNETT George | 58 |
5 | ORAM James | 68 |
6 | HANSEN Jesper | 60 |
7 | WARBASSE Larry | 67 |
8 | LUDVIGSSON Tobias | 76 |
9 | SAGAN Peter | 78 |
10 | VILLELLA Davide | 66 |
11 | HENTTALA Joonas | 73 |
12 | HOLLER Nikodemus | 58 |
13 | BOSWELL Ian | 70 |
14 | DUCHESNE Antoine | 75 |
16 | PUTT Tanner | 75 |
17 | DENNIS Rohan | 72 |
18 | LEMUS Luis | 61 |
19 | BROWN Nathan | 65 |
22 | DE MESMAEKER Kevin | 68 |