Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Ayuso
1
65 kgMartinez
2
52 kgRiccitello
3
55 kgLecerf
4
54 kgPellizzari
5
66 kgGuardeño
7
62 kgRolland
8
59 kgGarofoli
10
62 kgGermani
11
62 kgvan Bekkum
12
62 kgStaune-Mittet
13
67 kgPaleni
15
65 kgHajek
16
55 kgRafferty
17
65 kgFaure Prost
18
67 kgBittner
19
73 kgWenzel
20
68 kgMiholjević
22
72 kgLeonard
23
60 kgRouland
24
55 kgCastellon
26
55 kg
1
65 kgMartinez
2
52 kgRiccitello
3
55 kgLecerf
4
54 kgPellizzari
5
66 kgGuardeño
7
62 kgRolland
8
59 kgGarofoli
10
62 kgGermani
11
62 kgvan Bekkum
12
62 kgStaune-Mittet
13
67 kgPaleni
15
65 kgHajek
16
55 kgRafferty
17
65 kgFaure Prost
18
67 kgBittner
19
73 kgWenzel
20
68 kgMiholjević
22
72 kgLeonard
23
60 kgRouland
24
55 kgCastellon
26
55 kg
Weight (KG) →
Result →
73
52
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | AYUSO Juan | 65 |
2 | MARTINEZ Lenny | 52 |
3 | RICCITELLO Matthew | 55 |
4 | LECERF Junior | 54 |
5 | PELLIZZARI Giulio | 66 |
7 | GUARDEÑO Jaume | 62 |
8 | ROLLAND Brieuc | 59 |
10 | GAROFOLI Gianmarco | 62 |
11 | GERMANI Lorenzo | 62 |
12 | VAN BEKKUM Darren | 62 |
13 | STAUNE-MITTET Johannes | 67 |
15 | PALENI Enzo | 65 |
16 | HAJEK Alexander | 55 |
17 | RAFFERTY Darren | 65 |
18 | FAURE PROST Alexy | 67 |
19 | BITTNER Pavel | 73 |
20 | WENZEL Mats | 68 |
22 | MIHOLJEVIĆ Fran | 72 |
23 | LEONARD Michael | 60 |
24 | ROULAND Louis | 55 |
26 | CASTELLON Jan | 55 |