Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
De Bondt
1
73 kgEvenepoel
2
61 kgAntunes
3
55 kgRodrigues
4
60 kgMartin
5
59 kgSchachmann
6
71 kgGrigorev
7
73 kgLópez
8
59 kgFigueiredo
9
56 kgSchär
10
78 kgLópez
11
70 kgTrueba
12
65 kgPedersen
14
71 kgCosta
15
69 kgAntunes
16
58 kgNibali
17
65 kgTejada
19
63 kgFrison
20
84 kgDombrowski
21
68 kgBjerg
22
78 kg
1
73 kgEvenepoel
2
61 kgAntunes
3
55 kgRodrigues
4
60 kgMartin
5
59 kgSchachmann
6
71 kgGrigorev
7
73 kgLópez
8
59 kgFigueiredo
9
56 kgSchär
10
78 kgLópez
11
70 kgTrueba
12
65 kgPedersen
14
71 kgCosta
15
69 kgAntunes
16
58 kgNibali
17
65 kgTejada
19
63 kgFrison
20
84 kgDombrowski
21
68 kgBjerg
22
78 kg
Weight (KG) →
Result →
84
55
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DE BONDT Dries | 73 |
2 | EVENEPOEL Remco | 61 |
3 | ANTUNES Tiago | 55 |
4 | RODRIGUES João | 60 |
5 | MARTIN Dan | 59 |
6 | SCHACHMANN Maximilian | 71 |
7 | GRIGOREV Aleksandr | 73 |
8 | LÓPEZ Miguel Ángel | 59 |
9 | FIGUEIREDO Frederico | 56 |
10 | SCHÄR Michael | 78 |
11 | LÓPEZ Diego | 70 |
12 | TRUEBA Alvaro | 65 |
14 | PEDERSEN Casper | 71 |
15 | COSTA Rui | 69 |
16 | ANTUNES Amaro | 58 |
17 | NIBALI Vincenzo | 65 |
19 | TEJADA Harold | 63 |
20 | FRISON Frederik | 84 |
21 | DOMBROWSKI Joe | 68 |
22 | BJERG Mikkel | 78 |