Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bartoli
1
65 kgden Bakker
2
71 kgBugno
3
68 kgTchmil
4
75 kgSkibby
6
70 kgBortolami
7
73 kgBaguet
8
67 kgDernies
11
75 kgBallerini
13
78 kgHoffman
19
80 kgDe Clercq
20
66 kgHamburger
27
58 kgChanteur
28
62 kgHarmeling
33
76 kgvan der Poel
36
70 kgSteels
38
73 kgDekker
39
66 kgSimon
40
70 kgMichaelsen
43
79 kgJemison
46
71 kgLeMond
47
67 kgMagalhães Azevedo
50
70 kg
1
65 kgden Bakker
2
71 kgBugno
3
68 kgTchmil
4
75 kgSkibby
6
70 kgBortolami
7
73 kgBaguet
8
67 kgDernies
11
75 kgBallerini
13
78 kgHoffman
19
80 kgDe Clercq
20
66 kgHamburger
27
58 kgChanteur
28
62 kgHarmeling
33
76 kgvan der Poel
36
70 kgSteels
38
73 kgDekker
39
66 kgSimon
40
70 kgMichaelsen
43
79 kgJemison
46
71 kgLeMond
47
67 kgMagalhães Azevedo
50
70 kg
Weight (KG) →
Result →
80
58
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | BARTOLI Michele | 65 |
2 | DEN BAKKER Maarten | 71 |
3 | BUGNO Gianni | 68 |
4 | TCHMIL Andrei | 75 |
6 | SKIBBY Jesper | 70 |
7 | BORTOLAMI Gianluca | 73 |
8 | BAGUET Serge | 67 |
11 | DERNIES Michel | 75 |
13 | BALLERINI Franco | 78 |
19 | HOFFMAN Tristan | 80 |
20 | DE CLERCQ Mario | 66 |
27 | HAMBURGER Bo | 58 |
28 | CHANTEUR Pascal | 62 |
33 | HARMELING Rob | 76 |
36 | VAN DER POEL Adrie | 70 |
38 | STEELS Tom | 73 |
39 | DEKKER Erik | 66 |
40 | SIMON François | 70 |
43 | MICHAELSEN Lars | 79 |
46 | JEMISON Marty | 71 |
47 | LEMOND Greg | 67 |
50 | MAGALHÃES AZEVEDO Wanderley | 70 |