Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Cuvelier
1
65 kgFrantz
2
78 kgBidot
3
78 kgGérard
4
61 kgBeeckman
5
61 kgMagne
6
74 kgGobillot
7
58 kgBachellerie
9
76 kgFlahaut
10
64 kgGerbaud
11
76 kgNeuhard
12
67 kgCanova
13
71 kgMoulet
14
79 kgPetre
17
82 kgBesnier
19
65 kgLafosse
22
70 kgBernard
26
69 kgToussaint
27
68 kgPhilippe
30
68 kgGarin
31
54 kg
1
65 kgFrantz
2
78 kgBidot
3
78 kgGérard
4
61 kgBeeckman
5
61 kgMagne
6
74 kgGobillot
7
58 kgBachellerie
9
76 kgFlahaut
10
64 kgGerbaud
11
76 kgNeuhard
12
67 kgCanova
13
71 kgMoulet
14
79 kgPetre
17
82 kgBesnier
19
65 kgLafosse
22
70 kgBernard
26
69 kgToussaint
27
68 kgPhilippe
30
68 kgGarin
31
54 kg
Weight (KG) →
Result →
82
54
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | CUVELIER Georges | 65 |
2 | FRANTZ Nicolas | 78 |
3 | BIDOT Marcel | 78 |
4 | GÉRARD René | 61 |
5 | BEECKMAN Théophile | 61 |
6 | MAGNE Antonin | 74 |
7 | GOBILLOT Marcel | 58 |
9 | BACHELLERIE Pierre | 76 |
10 | FLAHAUT Albert | 64 |
11 | GERBAUD Robert | 76 |
12 | NEUHARD Ernest | 67 |
13 | CANOVA Giovanni | 71 |
14 | MOULET Fernand | 79 |
17 | PETRE Edouard | 82 |
19 | BESNIER Fernand | 65 |
22 | LAFOSSE Victor | 70 |
26 | BERNARD René | 69 |
27 | TOUSSAINT Adrien | 68 |
30 | PHILIPPE André | 68 |
31 | GARIN Charles | 54 |