Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Armée
1
72 kgDe Vreese
2
78 kgPolazzi
3
63 kgde Jonge
4
65 kgBaugnies
5
69 kgVanendert
6
64 kgLe Bon
7
70 kgDegand
8
63 kgClaeys
9
77 kgPratte
10
67 kgSerry
11
66 kgBagot
12
65 kgBulgaç
14
71 kgVichot
17
74 kgKeukeleire
19
69 kgBille
22
67 kgPieters
24
73 kgGhyselinck
28
74 kgDe Clercq
29
67 kg
1
72 kgDe Vreese
2
78 kgPolazzi
3
63 kgde Jonge
4
65 kgBaugnies
5
69 kgVanendert
6
64 kgLe Bon
7
70 kgDegand
8
63 kgClaeys
9
77 kgPratte
10
67 kgSerry
11
66 kgBagot
12
65 kgBulgaç
14
71 kgVichot
17
74 kgKeukeleire
19
69 kgBille
22
67 kgPieters
24
73 kgGhyselinck
28
74 kgDe Clercq
29
67 kg
Weight (KG) →
Result →
78
63
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | ARMÉE Sander | 72 |
2 | DE VREESE Laurens | 78 |
3 | POLAZZI Fabio | 63 |
4 | DE JONGE Maarten | 65 |
5 | BAUGNIES Jérôme | 69 |
6 | VANENDERT Dennis | 64 |
7 | LE BON Johan | 70 |
8 | DEGAND Thomas | 63 |
9 | CLAEYS Dimitri | 77 |
10 | PRATTE Philippe | 67 |
11 | SERRY Pieter | 66 |
12 | BAGOT Yoann | 65 |
14 | BULGAÇ Brian | 71 |
17 | VICHOT Arthur | 74 |
19 | KEUKELEIRE Jens | 69 |
22 | BILLE Gaëtan | 67 |
24 | PIETERS Sibrecht | 73 |
28 | GHYSELINCK Jan | 74 |
29 | DE CLERCQ Bart | 67 |