Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 140
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Bole
1
69 kgRoelandts
2
78 kgBoom
3
75 kgVandewalle
6
74 kgGesink
10
70 kgLeezer
12
76 kgBakelants
13
67 kgŠpilak
14
68 kgHermans
15
72 kgCornu
16
78 kgVelits
17
63 kgMaes
18
78 kgVelits
19
70 kgJacobs
20
68 kgDegand
27
63 kgDe Greef
29
77 kgDeroo
30
61 kgDevillers
35
62 kgSeeldraeyers
36
60 kgLund
46
65 kgVanendert
48
62 kgSchleck
50
68 kgPolazzi
53
63 kgLoubet
59
66 kg
1
69 kgRoelandts
2
78 kgBoom
3
75 kgVandewalle
6
74 kgGesink
10
70 kgLeezer
12
76 kgBakelants
13
67 kgŠpilak
14
68 kgHermans
15
72 kgCornu
16
78 kgVelits
17
63 kgMaes
18
78 kgVelits
19
70 kgJacobs
20
68 kgDegand
27
63 kgDe Greef
29
77 kgDeroo
30
61 kgDevillers
35
62 kgSeeldraeyers
36
60 kgLund
46
65 kgVanendert
48
62 kgSchleck
50
68 kgPolazzi
53
63 kgLoubet
59
66 kg
Weight (KG) →
Result →
78
60
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | BOLE Grega | 69 |
2 | ROELANDTS Jürgen | 78 |
3 | BOOM Lars | 75 |
6 | VANDEWALLE Kristof | 74 |
10 | GESINK Robert | 70 |
12 | LEEZER Tom | 76 |
13 | BAKELANTS Jan | 67 |
14 | ŠPILAK Simon | 68 |
15 | HERMANS Ben | 72 |
16 | CORNU Dominique | 78 |
17 | VELITS Peter | 63 |
18 | MAES Nikolas | 78 |
19 | VELITS Martin | 70 |
20 | JACOBS Pieter | 68 |
27 | DEGAND Thomas | 63 |
29 | DE GREEF Francis | 77 |
30 | DEROO David | 61 |
35 | DEVILLERS Gilles | 62 |
36 | SEELDRAEYERS Kevin | 60 |
46 | LUND Anders | 65 |
48 | VANENDERT Jelle | 62 |
50 | SCHLECK Andy | 68 |
53 | POLAZZI Fabio | 63 |
59 | LOUBET Julien | 66 |