Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Porter
2
66 kgPlowright
4
80 kgSayers
5
65 kgMetcalfe
7
59 kgHopkins
8
74 kgDinham
10
63 kgSens
13
71 kgBarrett
15
65 kgAlbrecht
16
62 kgMacKellar
19
69 kgBarnhill
28
64 kgSchultz
29
62 kgGilmore
31
70 kgKæmpe
32
59 kgEddy
34
79 kgBogna
35
66 kgForbes
42
58 kgMarshall
44
65 kgFox
48
71 kgJohnston
50
75 kgEvans
52
61 kgAlbrecht
60
67 kgWalsh
72
80 kgInglis
79
68 kg
2
66 kgPlowright
4
80 kgSayers
5
65 kgMetcalfe
7
59 kgHopkins
8
74 kgDinham
10
63 kgSens
13
71 kgBarrett
15
65 kgAlbrecht
16
62 kgMacKellar
19
69 kgBarnhill
28
64 kgSchultz
29
62 kgGilmore
31
70 kgKæmpe
32
59 kgEddy
34
79 kgBogna
35
66 kgForbes
42
58 kgMarshall
44
65 kgFox
48
71 kgJohnston
50
75 kgEvans
52
61 kgAlbrecht
60
67 kgWalsh
72
80 kgInglis
79
68 kg
Weight (KG) →
Result →
80
58
2
79
# | Rider | Weight (KG) |
---|---|---|
2 | PORTER Rudy | 66 |
4 | PLOWRIGHT Jensen | 80 |
5 | SAYERS Cooper | 65 |
7 | METCALFE Ben | 59 |
8 | HOPKINS Dylan | 74 |
10 | DINHAM Matthew | 63 |
13 | SENS Connor | 71 |
15 | BARRETT Sebastian | 65 |
16 | ALBRECHT Jasper | 62 |
19 | MACKELLAR Alastair | 69 |
28 | BARNHILL Zac | 64 |
29 | SCHULTZ Elliot | 62 |
31 | GILMORE Brady | 70 |
32 | KÆMPE Stinus Bjerring | 59 |
34 | EDDY Patrick | 79 |
35 | BOGNA Alex | 66 |
42 | FORBES James | 58 |
44 | MARSHALL Jack | 65 |
48 | FOX Matthew | 71 |
50 | JOHNSTON Liam | 75 |
52 | EVANS Spencer | 61 |
60 | ALBRECHT Piper | 67 |
72 | WALSH Liam | 80 |
79 | INGLIS Joseph | 68 |