Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Piccoli
5
65 kgMoazemi
8
70 kgGee
9
72 kgFoley
11
72 kgChrétien
12
65 kgGervais
16
72 kgBoivin
18
78 kgBurke
22
67 kgAnderson
25
66 kgJamieson
27
75 kgCôté
29
74 kgPerry
30
71 kgConly
32
63 kgRoberge
36
72 kgDal-Cin
40
77 kgRudderham
55
73 kgJuneau
60
67 kgMiles
62
64 kg
5
65 kgMoazemi
8
70 kgGee
9
72 kgFoley
11
72 kgChrétien
12
65 kgGervais
16
72 kgBoivin
18
78 kgBurke
22
67 kgAnderson
25
66 kgJamieson
27
75 kgCôté
29
74 kgPerry
30
71 kgConly
32
63 kgRoberge
36
72 kgDal-Cin
40
77 kgRudderham
55
73 kgJuneau
60
67 kgMiles
62
64 kg
Weight (KG) →
Result →
78
63
5
62
# | Rider | Weight (KG) |
---|---|---|
5 | PICCOLI James | 65 |
8 | MOAZEMI Arvin | 70 |
9 | GEE Derek | 72 |
11 | FOLEY Michael | 72 |
12 | CHRÉTIEN Charles-Étienne | 65 |
16 | GERVAIS Laurent | 72 |
18 | BOIVIN Guillaume | 78 |
22 | BURKE Jack | 67 |
25 | ANDERSON Ryan | 66 |
27 | JAMIESON Adam | 75 |
29 | CÔTÉ Pier-André | 74 |
30 | PERRY Benjamin | 71 |
32 | CONLY Lukas | 63 |
36 | ROBERGE Adam | 72 |
40 | DAL-CIN Matteo | 77 |
55 | RUDDERHAM Ryan | 73 |
60 | JUNEAU Francis | 67 |
62 | MILES Carson | 64 |