Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van Baarle
1
78 kgTusveld
3
70 kgTeunissen
4
73 kgvan Goethem
5
77 kgReinders
6
78.1 kgSchoonbroodt
8
78 kgOttema
11
77 kgRiesebeek
12
78 kgvan der Lijke
13
61 kgLammertink
14
68 kgVan Den Berg
20
77 kgBouwman
21
60 kgBugter
29
81 kgEising
32
80 kgGerts
33
71 kgvan der Burg
35
72 kg
1
78 kgTusveld
3
70 kgTeunissen
4
73 kgvan Goethem
5
77 kgReinders
6
78.1 kgSchoonbroodt
8
78 kgOttema
11
77 kgRiesebeek
12
78 kgvan der Lijke
13
61 kgLammertink
14
68 kgVan Den Berg
20
77 kgBouwman
21
60 kgBugter
29
81 kgEising
32
80 kgGerts
33
71 kgvan der Burg
35
72 kg
Weight (KG) →
Result →
81
60
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | VAN BAARLE Dylan | 78 |
3 | TUSVELD Martijn | 70 |
4 | TEUNISSEN Mike | 73 |
5 | VAN GOETHEM Brian | 77 |
6 | REINDERS Elmar | 78.1 |
8 | SCHOONBROODT Bob | 78 |
11 | OTTEMA Rick | 77 |
12 | RIESEBEEK Oscar | 78 |
13 | VAN DER LIJKE Nick | 61 |
14 | LAMMERTINK Steven | 68 |
20 | VAN DEN BERG Maarten | 77 |
21 | BOUWMAN Koen | 60 |
29 | BUGTER Luuc | 81 |
32 | EISING Tijmen | 80 |
33 | GERTS Floris | 71 |
35 | VAN DER BURG Joost | 72 |