Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 96
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Induráin
1
76 kgRoche
2
74 kgFignon
4
67 kgChiappucci
7
67 kgArgentin
8
66 kgJalabert
11
66 kgBölts
19
73 kgEkimov
23
69 kgBruyneel
25
71 kgBugno
26
68 kgDernies
31
75 kgSchur
32
73 kgHodge
38
74 kgHerrera
43
57 kgMurguialday
45
58 kgGayant
47
69 kgWalton
51
68 kgElli
52
71 kgvan der Poel
55
70 kgDe Wilde
59
70 kgMuseeuw
62
71 kgDelgado
63
64 kg
1
76 kgRoche
2
74 kgFignon
4
67 kgChiappucci
7
67 kgArgentin
8
66 kgJalabert
11
66 kgBölts
19
73 kgEkimov
23
69 kgBruyneel
25
71 kgBugno
26
68 kgDernies
31
75 kgSchur
32
73 kgHodge
38
74 kgHerrera
43
57 kgMurguialday
45
58 kgGayant
47
69 kgWalton
51
68 kgElli
52
71 kgvan der Poel
55
70 kgDe Wilde
59
70 kgMuseeuw
62
71 kgDelgado
63
64 kg
Weight (KG) →
Result →
76
57
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | INDURÁIN Miguel | 76 |
2 | ROCHE Stephen | 74 |
4 | FIGNON Laurent | 67 |
7 | CHIAPPUCCI Claudio | 67 |
8 | ARGENTIN Moreno | 66 |
11 | JALABERT Laurent | 66 |
19 | BÖLTS Udo | 73 |
23 | EKIMOV Viatcheslav | 69 |
25 | BRUYNEEL Johan | 71 |
26 | BUGNO Gianni | 68 |
31 | DERNIES Michel | 75 |
32 | SCHUR Jan | 73 |
38 | HODGE Stephen | 74 |
43 | HERRERA Luis Alberto | 57 |
45 | MURGUIALDAY Javier | 58 |
47 | GAYANT Martial | 69 |
51 | WALTON Brian | 68 |
52 | ELLI Alberto | 71 |
55 | VAN DER POEL Adrie | 70 |
59 | DE WILDE Etienne | 70 |
62 | MUSEEUW Johan | 71 |
63 | DELGADO Pedro | 64 |