Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Bonnafond
1
68 kgKadri
2
66 kgSmukulis
3
72 kgPantano
5
61 kgEijssen
6
60 kgMeyer
7
68 kgGeschke
8
64 kgSicard
9
63 kgGeniez
11
68 kgVanendert
12
64 kgVoß
13
66 kgBagot
14
65 kgDockx
15
64 kgO'Shea
19
76 kgClaeys
24
77 kgBobridge
29
65 kgBeyer
30
63 kgBérard
33
70 kgMolard
38
62 kgSuarez
53
67 kgDelaplace
54
65 kg
1
68 kgKadri
2
66 kgSmukulis
3
72 kgPantano
5
61 kgEijssen
6
60 kgMeyer
7
68 kgGeschke
8
64 kgSicard
9
63 kgGeniez
11
68 kgVanendert
12
64 kgVoß
13
66 kgBagot
14
65 kgDockx
15
64 kgO'Shea
19
76 kgClaeys
24
77 kgBobridge
29
65 kgBeyer
30
63 kgBérard
33
70 kgMolard
38
62 kgSuarez
53
67 kgDelaplace
54
65 kg
Weight (KG) →
Result →
77
60
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | BONNAFOND Guillaume | 68 |
2 | KADRI Blel | 66 |
3 | SMUKULIS Gatis | 72 |
5 | PANTANO Jarlinson | 61 |
6 | EIJSSEN Yannick | 60 |
7 | MEYER Travis | 68 |
8 | GESCHKE Simon | 64 |
9 | SICARD Romain | 63 |
11 | GENIEZ Alexandre | 68 |
12 | VANENDERT Dennis | 64 |
13 | VOß Paul | 66 |
14 | BAGOT Yoann | 65 |
15 | DOCKX Gert | 64 |
19 | O'SHEA Glenn | 76 |
24 | CLAEYS Dimitri | 77 |
29 | BOBRIDGE Jack | 65 |
30 | BEYER Chad | 63 |
33 | BÉRARD Julien | 70 |
38 | MOLARD Rudy | 62 |
53 | SUAREZ Camilo Andres | 67 |
54 | DELAPLACE Anthony | 65 |