Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 107
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Veyhe
1
77 kgČerný
3
75 kgvan der Tuuk
5
64 kgZahálka
7
73 kgJakin
10
71 kgJarrier
11
69 kgBárta
12
75 kgLevarlet
13
67 kgHayter
14
70 kgRuijgh
17
64 kgDernies
19
68 kgWright
20
75 kgSimón
22
64 kgHagen
23
65 kgKrul
25
68 kgSkjerping
26
71 kgBostock
28
69 kgScheire
30
61 kgTasset
35
63 kgde Lange
36
58 kg
1
77 kgČerný
3
75 kgvan der Tuuk
5
64 kgZahálka
7
73 kgJakin
10
71 kgJarrier
11
69 kgBárta
12
75 kgLevarlet
13
67 kgHayter
14
70 kgRuijgh
17
64 kgDernies
19
68 kgWright
20
75 kgSimón
22
64 kgHagen
23
65 kgKrul
25
68 kgSkjerping
26
71 kgBostock
28
69 kgScheire
30
61 kgTasset
35
63 kgde Lange
36
58 kg
Weight (KG) →
Result →
77
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | VEYHE Torkil | 77 |
3 | ČERNÝ Josef | 75 |
5 | VAN DER TUUK Danny | 64 |
7 | ZAHÁLKA Matěj | 73 |
10 | JAKIN Alo | 71 |
11 | JARRIER Benoît | 69 |
12 | BÁRTA Jan | 75 |
13 | LEVARLET Guillaume | 67 |
14 | HAYTER Ethan | 70 |
17 | RUIJGH Rob | 64 |
19 | DERNIES Tom | 68 |
20 | WRIGHT Fred | 75 |
22 | SIMÓN Jordi | 64 |
23 | HAGEN Carl Fredrik | 65 |
25 | KRUL Stef | 68 |
26 | SKJERPING Kristoffer | 71 |
28 | BOSTOCK Matthew | 69 |
30 | SCHEIRE Ruben | 61 |
35 | TASSET Marvin | 63 |
36 | DE LANGE Thijs | 58 |