Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Gilmore
2
56 kgMullens
7
57 kgWild
8
75 kgDruyts
13
62 kgvan Vleuten
14
59 kgDe Vocht
19
61 kgBecker
25
64 kgvan den Broek-Blaak
37
64 kgvan Dijk
38
71 kgBrennauer
40
63 kgGunnewijk
44
67 kgKoedooder
60
69 kgSlappendel
61
67 kgPolspoel
66
59 kgSchachl
72
57 kgWyman
73
56 kgSels
74
65 kg
2
56 kgMullens
7
57 kgWild
8
75 kgDruyts
13
62 kgvan Vleuten
14
59 kgDe Vocht
19
61 kgBecker
25
64 kgvan den Broek-Blaak
37
64 kgvan Dijk
38
71 kgBrennauer
40
63 kgGunnewijk
44
67 kgKoedooder
60
69 kgSlappendel
61
67 kgPolspoel
66
59 kgSchachl
72
57 kgWyman
73
56 kgSels
74
65 kg
Weight (KG) →
Result →
75
56
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | GILMORE Rochelle | 56 |
7 | MULLENS Peta | 57 |
8 | WILD Kirsten | 75 |
13 | DRUYTS Kelly | 62 |
14 | VAN VLEUTEN Annemiek | 59 |
19 | DE VOCHT Liesbet | 61 |
25 | BECKER Charlotte | 64 |
37 | VAN DEN BROEK-BLAAK Chantal | 64 |
38 | VAN DIJK Ellen | 71 |
40 | BRENNAUER Lisa | 63 |
44 | GUNNEWIJK Loes | 67 |
60 | KOEDOODER Vera | 69 |
61 | SLAPPENDEL Iris | 67 |
66 | POLSPOEL Maaike | 59 |
72 | SCHACHL Monika | 57 |
73 | WYMAN Helen | 56 |
74 | SELS Loes | 65 |