Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Albert
1
73 kgWilmann
2
69 kgZahner
3
73 kgAntomarchi
5
70 kgPetruš
8
58 kgKreder
10
67 kgRetschke
12
66 kgLang
14
73 kgBérard
15
70 kgPérichon
16
69 kgBrun
18
73 kgClaeys
20
77 kgde Baat
21
66 kgMolard
22
62 kgNovikov
26
77 kgKritskiy
27
81 kgBarle
30
72 kgMamos
31
72 kgOckeloen
35
66 kg
1
73 kgWilmann
2
69 kgZahner
3
73 kgAntomarchi
5
70 kgPetruš
8
58 kgKreder
10
67 kgRetschke
12
66 kgLang
14
73 kgBérard
15
70 kgPérichon
16
69 kgBrun
18
73 kgClaeys
20
77 kgde Baat
21
66 kgMolard
22
62 kgNovikov
26
77 kgKritskiy
27
81 kgBarle
30
72 kgMamos
31
72 kgOckeloen
35
66 kg
Weight (KG) →
Result →
81
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | ALBERT Niels | 73 |
2 | WILMANN Frederik | 69 |
3 | ZAHNER Simon | 73 |
5 | ANTOMARCHI Julien | 70 |
8 | PETRUŠ Lubomir | 58 |
10 | KREDER Michel | 67 |
12 | RETSCHKE Robert | 66 |
14 | LANG Pirmin | 73 |
15 | BÉRARD Julien | 70 |
16 | PÉRICHON Pierre-Luc | 69 |
18 | BRUN Frederic | 73 |
20 | CLAEYS Dimitri | 77 |
21 | DE BAAT Arjen | 66 |
22 | MOLARD Rudy | 62 |
26 | NOVIKOV Nikita | 77 |
27 | KRITSKIY Timofey | 81 |
30 | BARLE Florent | 72 |
31 | MAMOS Philipp | 72 |
35 | OCKELOEN Jasper | 66 |