Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Delrieu
2
69 kgOriol
3
65 kgChavanel
4
73 kgFofonov
5
65 kgPaumier
6
57 kgPoilvet
7
71 kgJonker
8
69 kgPetrov
9
70 kgFédrigo
12
66 kgBouyer
13
65 kgMaignan
14
63 kgRinero
15
65 kgRutkiewicz
17
66 kgSalmon
20
60 kgRasch
21
72 kgKaggestad
22
66 kgRenier
25
69 kgPencolé
28
74 kgLoder
30
62 kgHervé
32
60 kgClain
40
59 kgRatti
43
64 kg
2
69 kgOriol
3
65 kgChavanel
4
73 kgFofonov
5
65 kgPaumier
6
57 kgPoilvet
7
71 kgJonker
8
69 kgPetrov
9
70 kgFédrigo
12
66 kgBouyer
13
65 kgMaignan
14
63 kgRinero
15
65 kgRutkiewicz
17
66 kgSalmon
20
60 kgRasch
21
72 kgKaggestad
22
66 kgRenier
25
69 kgPencolé
28
74 kgLoder
30
62 kgHervé
32
60 kgClain
40
59 kgRatti
43
64 kg
Weight (KG) →
Result →
74
57
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | DELRIEU David | 69 |
3 | ORIOL Christophe | 65 |
4 | CHAVANEL Sylvain | 73 |
5 | FOFONOV Dmitriy | 65 |
6 | PAUMIER Laurent | 57 |
7 | POILVET Benoît | 71 |
8 | JONKER Patrick | 69 |
9 | PETROV Evgeni | 70 |
12 | FÉDRIGO Pierrick | 66 |
13 | BOUYER Franck | 65 |
14 | MAIGNAN Gilles | 63 |
15 | RINERO Christophe | 65 |
17 | RUTKIEWICZ Marek | 66 |
20 | SALMON Benoît | 60 |
21 | RASCH Gabriel | 72 |
22 | KAGGESTAD Mads | 66 |
25 | RENIER Franck | 69 |
28 | PENCOLÉ Franck | 74 |
30 | LODER Thierry | 62 |
32 | HERVÉ Cédric | 60 |
40 | CLAIN Médéric | 59 |
43 | RATTI Eddy | 64 |