Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Dennis
1
72 kgNovák
2
71 kgSlagter
3
57 kgCataford
4
70 kgDuchesne
5
75 kgSagan
7
78 kgLudvigsson
8
76 kgDillier
9
75 kgMcCabe
11
72 kgWarbasse
13
67 kgHofland
14
71 kgKeough
18
68 kgOronte
20
65 kgHepburn
21
77 kgAhlstrand
22
72 kgGoos
23
65 kgDamuseau
25
64 kgJones
28
64 kgKoch
29
69 kgBobridge
32
65 kg
1
72 kgNovák
2
71 kgSlagter
3
57 kgCataford
4
70 kgDuchesne
5
75 kgSagan
7
78 kgLudvigsson
8
76 kgDillier
9
75 kgMcCabe
11
72 kgWarbasse
13
67 kgHofland
14
71 kgKeough
18
68 kgOronte
20
65 kgHepburn
21
77 kgAhlstrand
22
72 kgGoos
23
65 kgDamuseau
25
64 kgJones
28
64 kgKoch
29
69 kgBobridge
32
65 kg
Weight (KG) →
Result →
78
57
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | DENNIS Rohan | 72 |
2 | NOVÁK Jakub | 71 |
3 | SLAGTER Tom-Jelte | 57 |
4 | CATAFORD Alexander | 70 |
5 | DUCHESNE Antoine | 75 |
7 | SAGAN Peter | 78 |
8 | LUDVIGSSON Tobias | 76 |
9 | DILLIER Silvan | 75 |
11 | MCCABE Travis | 72 |
13 | WARBASSE Larry | 67 |
14 | HOFLAND Moreno | 71 |
18 | KEOUGH Luke | 68 |
20 | ORONTE Emerson | 65 |
21 | HEPBURN Michael | 77 |
22 | AHLSTRAND Jonas | 72 |
23 | GOOS Marc | 65 |
25 | DAMUSEAU Thomas | 64 |
28 | JONES Carter | 64 |
29 | KOCH Michel | 69 |
32 | BOBRIDGE Jack | 65 |