Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 42
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Kadlec
2
70 kgKers
3
71 kgLiphongyu
10
61 kgSai-udomsin
11
60 kgBoonratanathanakorn
13
72 kgChan
14
70 kgLahsaini
19
77 kgSirironnachai
31
61 kgBaasankhuu
37
62 kgZulkifli
40
65 kgVeldt
45
78 kgEvans
51
70 kgFelipe
64
58 kgWang
67
65 kgSisr
69
72 kgGaledo
87
58 kgShpilevsky
100
78 kgKhalmuratov
102
68 kg
2
70 kgKers
3
71 kgLiphongyu
10
61 kgSai-udomsin
11
60 kgBoonratanathanakorn
13
72 kgChan
14
70 kgLahsaini
19
77 kgSirironnachai
31
61 kgBaasankhuu
37
62 kgZulkifli
40
65 kgVeldt
45
78 kgEvans
51
70 kgFelipe
64
58 kgWang
67
65 kgSisr
69
72 kgGaledo
87
58 kgShpilevsky
100
78 kgKhalmuratov
102
68 kg
Weight (KG) →
Result →
78
58
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | KADLEC Milan | 70 |
3 | KERS Koos Jeroen | 71 |
10 | LIPHONGYU Navuti | 61 |
11 | SAI-UDOMSIN Phuchong | 60 |
13 | BOONRATANATHANAKORN Turakit | 72 |
14 | CHAN Chun Hing | 70 |
19 | LAHSAINI Mouhssine | 77 |
31 | SIRIRONNACHAI Sarawut | 61 |
37 | BAASANKHUU Myagmarsuren | 62 |
40 | ZULKIFLI Nik Mohamad Azman | 65 |
45 | VELDT Tim | 78 |
51 | EVANS Brad | 70 |
64 | FELIPE Marcelo | 58 |
67 | WANG Zhen | 65 |
69 | SISR František | 72 |
87 | GALEDO Mark John Lexer | 58 |
100 | SHPILEVSKY Boris | 78 |
102 | KHALMURATOV Muradjan | 68 |