Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 38
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Groen
2
70.5 kgHristov
3
57 kgSayar
4
64 kgPapok
7
76 kgBalkan
11
64 kgLašinis
12
69 kgBalkan
13
69 kgŠiškevičius
16
70 kgSloof
17
70 kgAkdilek
18
68 kgÖrken
19
69 kgKüçükbay
20
70 kgRamanau
21
68 kgKal
24
72 kgDžervus
30
77 kgMirza
32
60 kgSamli
33
75 kgTalen
34
76 kgBazhkou
37
65 kgKafes
40
71 kgSergis
41
75 kg
2
70.5 kgHristov
3
57 kgSayar
4
64 kgPapok
7
76 kgBalkan
11
64 kgLašinis
12
69 kgBalkan
13
69 kgŠiškevičius
16
70 kgSloof
17
70 kgAkdilek
18
68 kgÖrken
19
69 kgKüçükbay
20
70 kgRamanau
21
68 kgKal
24
72 kgDžervus
30
77 kgMirza
32
60 kgSamli
33
75 kgTalen
34
76 kgBazhkou
37
65 kgKafes
40
71 kgSergis
41
75 kg
Weight (KG) →
Result →
77
57
2
41
# | Rider | Weight (KG) |
---|---|---|
2 | GROEN Ike | 70.5 |
3 | HRISTOV Stefan Koychev | 57 |
4 | SAYAR Mustafa | 64 |
7 | PAPOK Siarhei | 76 |
11 | BALKAN Serkan | 64 |
12 | LAŠINIS Venantas | 69 |
13 | BALKAN Onur | 69 |
16 | ŠIŠKEVIČIUS Paulius | 70 |
17 | SLOOF Jordi | 70 |
18 | AKDILEK Ahmet | 68 |
19 | ÖRKEN Ahmet | 69 |
20 | KÜÇÜKBAY Kemal | 70 |
21 | RAMANAU Raman | 68 |
24 | KAL Miraç | 72 |
30 | DŽERVUS Darijus | 77 |
32 | MIRZA Yousif | 60 |
33 | SAMLI Feritcan | 75 |
34 | TALEN Jordi | 76 |
37 | BAZHKOU Stanislau | 65 |
40 | KAFES Turgut | 71 |
41 | SERGIS Kaspars | 75 |