Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 37
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Miholjević
3
68 kgKohut
5
65 kgPetrov
12
70 kgRogina
13
70 kgMahorič
14
68 kgSinkewitz
17
63 kgBonča
20
63 kgGasparre
22
60 kgLupeikis
32
80 kgValach
36
75 kgPozzato
38
73 kgMcCann
40
73 kgEisel
41
74 kgMugerli
42
68 kgKvasina
43
72 kgKrupa
51
74 kgStrgar
54
62 kgGazvoda
55
72 kgMarin
59
67 kg
3
68 kgKohut
5
65 kgPetrov
12
70 kgRogina
13
70 kgMahorič
14
68 kgSinkewitz
17
63 kgBonča
20
63 kgGasparre
22
60 kgLupeikis
32
80 kgValach
36
75 kgPozzato
38
73 kgMcCann
40
73 kgEisel
41
74 kgMugerli
42
68 kgKvasina
43
72 kgKrupa
51
74 kgStrgar
54
62 kgGazvoda
55
72 kgMarin
59
67 kg
Weight (KG) →
Result →
80
60
3
59
# | Rider | Weight (KG) |
---|---|---|
3 | MIHOLJEVIĆ Vladimir | 68 |
5 | KOHUT Sławomir | 65 |
12 | PETROV Evgeni | 70 |
13 | ROGINA Radoslav | 70 |
14 | MAHORIČ Mitja | 68 |
17 | SINKEWITZ Patrik | 63 |
20 | BONČA Valter | 63 |
22 | GASPARRE Graziano | 60 |
32 | LUPEIKIS Remigius | 80 |
36 | VALACH Ján | 75 |
38 | POZZATO Filippo | 73 |
40 | MCCANN David | 73 |
41 | EISEL Bernhard | 74 |
42 | MUGERLI Matej | 68 |
43 | KVASINA Matija | 72 |
51 | KRUPA Dawid | 74 |
54 | STRGAR Matic | 62 |
55 | GAZVODA Gregor | 72 |
59 | MARIN Matej | 67 |