Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Abbott
1
52 kgArmstrong
2
58 kgDuehring
3
54 kgVillumsen
5
59 kgHall
6
52 kgStephens
7
55 kgYonamine
9
51 kgThomas
11
58 kgPoidevin
12
56 kgKiesanowski
19
56 kgLaws
20
54 kgBergen
21
64 kgPrieto
27
54 kgLuebke
29
54 kgPeñuela
31
53 kgSimmonds
32
55 kgRoorda
36
70 kgHammes
41
54 kgPilote Fortin
50
55 kgSaarelainen
58
58 kg
1
52 kgArmstrong
2
58 kgDuehring
3
54 kgVillumsen
5
59 kgHall
6
52 kgStephens
7
55 kgYonamine
9
51 kgThomas
11
58 kgPoidevin
12
56 kgKiesanowski
19
56 kgLaws
20
54 kgBergen
21
64 kgPrieto
27
54 kgLuebke
29
54 kgPeñuela
31
53 kgSimmonds
32
55 kgRoorda
36
70 kgHammes
41
54 kgPilote Fortin
50
55 kgSaarelainen
58
58 kg
Weight (KG) →
Result →
70
51
1
58
# | Rider | Weight (KG) |
---|---|---|
1 | ABBOTT Mara | 52 |
2 | ARMSTRONG Kristin | 58 |
3 | DUEHRING Jasmin | 54 |
5 | VILLUMSEN Linda | 59 |
6 | HALL Katie | 52 |
7 | STEPHENS Lauren | 55 |
9 | YONAMINE Eri | 51 |
11 | THOMAS Leah | 58 |
12 | POIDEVIN Sara | 56 |
19 | KIESANOWSKI Joanne | 56 |
20 | LAWS Sharon | 54 |
21 | BERGEN Sara | 64 |
27 | PRIETO Marcela Elizabeth | 54 |
29 | LUEBKE Jennifer | 54 |
31 | PEÑUELA Diana | 53 |
32 | SIMMONDS Hayley | 55 |
36 | ROORDA Stephanie | 70 |
41 | HAMMES Kathrin | 54 |
50 | PILOTE FORTIN Gabrielle | 55 |
58 | SAARELAINEN Sari | 58 |