Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Alarcón
1
72 kgValverde
2
61 kgArroyo
3
63 kgBilbao
4
60 kgBrandão
5
64 kgGrijalba
6
61 kgPhelan
7
73 kgEzquerra
8
68 kgVinhas
9
59 kgRosón
11
62 kgReis
12
72 kgBetancur
13
60 kgBarbero
14
66 kgStrakhov
16
70 kgGerdemann
17
71 kgFigueiredo
18
56 kgBizkarra
19
53 kgMestre
20
58 kgAlmeida
21
64 kg
1
72 kgValverde
2
61 kgArroyo
3
63 kgBilbao
4
60 kgBrandão
5
64 kgGrijalba
6
61 kgPhelan
7
73 kgEzquerra
8
68 kgVinhas
9
59 kgRosón
11
62 kgReis
12
72 kgBetancur
13
60 kgBarbero
14
66 kgStrakhov
16
70 kgGerdemann
17
71 kgFigueiredo
18
56 kgBizkarra
19
53 kgMestre
20
58 kgAlmeida
21
64 kg
Weight (KG) →
Result →
73
53
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ALARCÓN Raúl | 72 |
2 | VALVERDE Alejandro | 61 |
3 | ARROYO David | 63 |
4 | BILBAO Pello | 60 |
5 | BRANDÃO Joni | 64 |
6 | GRIJALBA Fernando | 61 |
7 | PHELAN Adam | 73 |
8 | EZQUERRA Jesús | 68 |
9 | VINHAS Rui | 59 |
11 | ROSÓN Jaime | 62 |
12 | REIS Rafael | 72 |
13 | BETANCUR Carlos | 60 |
14 | BARBERO Carlos | 66 |
16 | STRAKHOV Dmitry | 70 |
17 | GERDEMANN Linus | 71 |
18 | FIGUEIREDO Frederico | 56 |
19 | BIZKARRA Mikel | 53 |
20 | MESTRE Ricardo | 58 |
21 | ALMEIDA Nuno | 64 |