Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Roesems
1
81 kgBoucher
2
78 kgRosseler
3
78 kgFédrigo
5
66 kgTerpstra
6
75 kgDelage
7
70 kgBonsergent
8
66 kgVan Hecke
9
69 kgVasseur
10
70 kgEeckhout
11
73 kgTjallingii
12
81 kgBaumann
13
72 kgLadagnous
14
73 kgRooijakkers
15
68 kgMengin
17
68 kgGeslin
19
68 kgLevarlet
20
67 kgLaurent
21
72 kg
1
81 kgBoucher
2
78 kgRosseler
3
78 kgFédrigo
5
66 kgTerpstra
6
75 kgDelage
7
70 kgBonsergent
8
66 kgVan Hecke
9
69 kgVasseur
10
70 kgEeckhout
11
73 kgTjallingii
12
81 kgBaumann
13
72 kgLadagnous
14
73 kgRooijakkers
15
68 kgMengin
17
68 kgGeslin
19
68 kgLevarlet
20
67 kgLaurent
21
72 kg
Weight (KG) →
Result →
81
66
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ROESEMS Bert | 81 |
2 | BOUCHER David | 78 |
3 | ROSSELER Sébastien | 78 |
5 | FÉDRIGO Pierrick | 66 |
6 | TERPSTRA Niki | 75 |
7 | DELAGE Mickaël | 70 |
8 | BONSERGENT Stéphane | 66 |
9 | VAN HECKE Preben | 69 |
10 | VASSEUR Cédric | 70 |
11 | EECKHOUT Niko | 73 |
12 | TJALLINGII Maarten | 81 |
13 | BAUMANN Eric | 72 |
14 | LADAGNOUS Matthieu | 73 |
15 | ROOIJAKKERS Piet | 68 |
17 | MENGIN Christophe | 68 |
19 | GESLIN Anthony | 68 |
20 | LEVARLET Guillaume | 67 |
21 | LAURENT Christophe | 72 |