Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vos
1
58 kgvan Vleuten
2
59 kgWild
3
75 kgHosking
4
60 kgvan Dijk
5
71 kgSlappendel
8
67 kgVisser
10
59 kgGunnewijk
12
67 kgBrand
13
57 kgDe Vocht
18
61 kgPieters
21
58 kgHannes
23
51 kgMartin
27
57 kgFahlin
28
63 kgHoskins
33
64 kgKoedooder
38
69 kgPolspoel
41
59 kgBates
43
69 kgKessler
47
60 kg
1
58 kgvan Vleuten
2
59 kgWild
3
75 kgHosking
4
60 kgvan Dijk
5
71 kgSlappendel
8
67 kgVisser
10
59 kgGunnewijk
12
67 kgBrand
13
57 kgDe Vocht
18
61 kgPieters
21
58 kgHannes
23
51 kgMartin
27
57 kgFahlin
28
63 kgHoskins
33
64 kgKoedooder
38
69 kgPolspoel
41
59 kgBates
43
69 kgKessler
47
60 kg
Weight (KG) →
Result →
75
51
1
47
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | VAN VLEUTEN Annemiek | 59 |
3 | WILD Kirsten | 75 |
4 | HOSKING Chloe | 60 |
5 | VAN DIJK Ellen | 71 |
8 | SLAPPENDEL Iris | 67 |
10 | VISSER Adrie | 59 |
12 | GUNNEWIJK Loes | 67 |
13 | BRAND Lucinda | 57 |
18 | DE VOCHT Liesbet | 61 |
21 | PIETERS Amy | 58 |
23 | HANNES Kaat | 51 |
27 | MARTIN Lucy | 57 |
28 | FAHLIN Emilia | 63 |
33 | HOSKINS Melissa | 64 |
38 | KOEDOODER Vera | 69 |
41 | POLSPOEL Maaike | 59 |
43 | BATES Katherine | 69 |
47 | KESSLER Nina | 60 |