Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 48
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Pogačar
1
66 kgvan den Berg
2
72 kgLašinis
3
69 kgvan der Horst
5
62 kgBouwmans
6
64 kgSchrijver
7
64 kgPękala
10
65 kgJerman
11
67 kgRojus
12
83 kgAniołkowski
13
68 kgJagiela
16
64 kgSchmiedel
19
80 kgRudys
21
60 kgDekker
23
80 kgJakala
25
69 kgFinkšt
32
70 kgvan Sintmaartensdijk
33
77 kgBeniušis
35
85 kgJohanson
37
74 kgSławek
39
73 kgWeber
40
78 kg
1
66 kgvan den Berg
2
72 kgLašinis
3
69 kgvan der Horst
5
62 kgBouwmans
6
64 kgSchrijver
7
64 kgPękala
10
65 kgJerman
11
67 kgRojus
12
83 kgAniołkowski
13
68 kgJagiela
16
64 kgSchmiedel
19
80 kgRudys
21
60 kgDekker
23
80 kgJakala
25
69 kgFinkšt
32
70 kgvan Sintmaartensdijk
33
77 kgBeniušis
35
85 kgJohanson
37
74 kgSławek
39
73 kgWeber
40
78 kg
Weight (KG) →
Result →
85
60
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | POGAČAR Tadej | 66 |
2 | VAN DEN BERG Lars | 72 |
3 | LAŠINIS Venantas | 69 |
5 | VAN DER HORST Dennis | 62 |
6 | BOUWMANS Dylan | 64 |
7 | SCHRIJVER Jorgos | 64 |
10 | PĘKALA Piotr | 65 |
11 | JERMAN Žiga | 67 |
12 | ROJUS Adomaitis | 83 |
13 | ANIOŁKOWSKI Stanisław | 68 |
16 | JAGIELA Adam | 64 |
19 | SCHMIEDEL Sebastian | 80 |
21 | RUDYS Paul | 60 |
23 | DEKKER David | 80 |
25 | JAKALA Jakub | 69 |
32 | FINKŠT Tilen | 70 |
33 | VAN SINTMAARTENSDIJK Daan | 77 |
35 | BENIUŠIS Justas | 85 |
37 | JOHANSON Kristjan | 74 |
39 | SŁAWEK Damian | 73 |
40 | WEBER Philip | 78 |