Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 22
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Kwiatkowski
1
68 kgBrändle
2
80 kgGuldhammer
4
66 kgMajka
6
62 kgJuul-Jensen
7
73 kgDillier
9
75 kgSalomein
12
80 kgPoljański
13
63 kgSagan
16
78 kgOwsian
19
66 kgEijssen
21
60 kgPolnický
23
68 kgJones
26
64 kgPetruš
29
58 kgVermote
31
74 kgWallays
33
77 kgVermote
40
74 kgMahďar
43
61 kgSteels
73
78 kgImhof
76
80 kgNovák
86
71 kg
1
68 kgBrändle
2
80 kgGuldhammer
4
66 kgMajka
6
62 kgJuul-Jensen
7
73 kgDillier
9
75 kgSalomein
12
80 kgPoljański
13
63 kgSagan
16
78 kgOwsian
19
66 kgEijssen
21
60 kgPolnický
23
68 kgJones
26
64 kgPetruš
29
58 kgVermote
31
74 kgWallays
33
77 kgVermote
40
74 kgMahďar
43
61 kgSteels
73
78 kgImhof
76
80 kgNovák
86
71 kg
Weight (KG) →
Result →
80
58
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | KWIATKOWSKI Michał | 68 |
2 | BRÄNDLE Matthias | 80 |
4 | GULDHAMMER Rasmus | 66 |
6 | MAJKA Rafał | 62 |
7 | JUUL-JENSEN Christopher | 73 |
9 | DILLIER Silvan | 75 |
12 | SALOMEIN Jarl | 80 |
13 | POLJAŃSKI Paweł | 63 |
16 | SAGAN Peter | 78 |
19 | OWSIAN Łukasz | 66 |
21 | EIJSSEN Yannick | 60 |
23 | POLNICKÝ Jiří | 68 |
26 | JONES Carter | 64 |
29 | PETRUŠ Lubomir | 58 |
31 | VERMOTE Julien | 74 |
33 | WALLAYS Jelle | 77 |
40 | VERMOTE Alphonse | 74 |
43 | MAHĎAR Martin | 61 |
73 | STEELS Stijn | 78 |
76 | IMHOF Claudio | 80 |
86 | NOVÁK Jakub | 71 |