Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Grassin
1
62 kgDhers
2
72 kgDetreille
3
70 kgBidot
5
78 kgGatier
7
64 kgAnseeuw
8
76 kgCoomans
9
62 kgGerbaud
11
76 kgNempon
12
58 kgChassot
14
72 kgDegy
15
74 kgSamyn
16
71 kgMoulet
17
79 kgLacolle
18
82 kgLoew
20
76 kgLafosse
21
70 kgLouis
22
65 kgBilling
24
75 kgHennuyer
25
76 kg
1
62 kgDhers
2
72 kgDetreille
3
70 kgBidot
5
78 kgGatier
7
64 kgAnseeuw
8
76 kgCoomans
9
62 kgGerbaud
11
76 kgNempon
12
58 kgChassot
14
72 kgDegy
15
74 kgSamyn
16
71 kgMoulet
17
79 kgLacolle
18
82 kgLoew
20
76 kgLafosse
21
70 kgLouis
22
65 kgBilling
24
75 kgHennuyer
25
76 kg
Weight (KG) →
Result →
82
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | GRASSIN Robert | 62 |
2 | DHERS Eugène | 72 |
3 | DETREILLE Georges | 70 |
5 | BIDOT Marcel | 78 |
7 | GATIER Georges | 64 |
8 | ANSEEUW Urbain | 76 |
9 | COOMANS Jacques | 62 |
11 | GERBAUD Robert | 76 |
12 | NEMPON Jules | 58 |
14 | CHASSOT René | 72 |
15 | DEGY Gaston | 74 |
16 | SAMYN Julien | 71 |
17 | MOULET Fernand | 79 |
18 | LACOLLE Roger | 82 |
20 | LOEW Charles | 76 |
21 | LAFOSSE Victor | 70 |
22 | LOUIS Leonce | 65 |
24 | BILLING René | 75 |
25 | HENNUYER Charles | 76 |