Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 42
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Thomas
1
68 kgMadouas
2
71 kgVincent
3
62 kgBarthe
4
70 kgCosnefroy
5
65 kgWarlop
6
71 kgIrisarri
7
66 kgMenten
8
68 kgSix
9
72 kgTouzé
10
69 kgBarceló
11
65 kgBarbier
12
69 kgOien
13
68 kgPlanckaert
14
71 kgAlbanese
15
70 kgMoreira
16
76 kgIdjouadiene
17
69 kgGarel
18
77 kg
1
68 kgMadouas
2
71 kgVincent
3
62 kgBarthe
4
70 kgCosnefroy
5
65 kgWarlop
6
71 kgIrisarri
7
66 kgMenten
8
68 kgSix
9
72 kgTouzé
10
69 kgBarceló
11
65 kgBarbier
12
69 kgOien
13
68 kgPlanckaert
14
71 kgAlbanese
15
70 kgMoreira
16
76 kgIdjouadiene
17
69 kgGarel
18
77 kg
Weight (KG) →
Result →
77
62
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | THOMAS Benjamin | 68 |
2 | MADOUAS Valentin | 71 |
3 | VINCENT Léo | 62 |
4 | BARTHE Cyril | 70 |
5 | COSNEFROY Benoît | 65 |
6 | WARLOP Jordi | 71 |
7 | IRISARRI Jon | 66 |
8 | MENTEN Milan | 68 |
9 | SIX Franklin | 72 |
10 | TOUZÉ Damien | 69 |
11 | BARCELÓ Fernando | 65 |
12 | BARBIER Pierre | 69 |
13 | OIEN Justin | 68 |
14 | PLANCKAERT Edward | 71 |
15 | ALBANESE Vincenzo | 70 |
16 | MOREIRA Mauricio | 76 |
17 | IDJOUADIENE Pierre | 69 |
18 | GAREL Adrien | 77 |