Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Delfosse
1
73 kgBideau
2
73 kgGuillou
3
71 kgDe Greef
4
77 kgBakelants
9
67 kgNolf
10
68 kgBaugnies
11
69 kgPolazzi
13
63 kgDockx
17
64 kgKreder
18
67 kgArmée
20
72 kgDegand
22
63 kgDe Vreese
25
78 kgZingle
27
67 kgGoddaert
29
72 kgNeyens
32
74 kgDevillers
34
62 kgPardini
35
68 kgKvist
44
68 kgGourgue
51
62 kgVan Melsen
52
77 kg
1
73 kgBideau
2
73 kgGuillou
3
71 kgDe Greef
4
77 kgBakelants
9
67 kgNolf
10
68 kgBaugnies
11
69 kgPolazzi
13
63 kgDockx
17
64 kgKreder
18
67 kgArmée
20
72 kgDegand
22
63 kgDe Vreese
25
78 kgZingle
27
67 kgGoddaert
29
72 kgNeyens
32
74 kgDevillers
34
62 kgPardini
35
68 kgKvist
44
68 kgGourgue
51
62 kgVan Melsen
52
77 kg
Weight (KG) →
Result →
78
62
1
52
# | Rider | Weight (KG) |
---|---|---|
1 | DELFOSSE Sébastien | 73 |
2 | BIDEAU Jean-Marc | 73 |
3 | GUILLOU Florian | 71 |
4 | DE GREEF Francis | 77 |
9 | BAKELANTS Jan | 67 |
10 | NOLF Frederiek | 68 |
11 | BAUGNIES Jérôme | 69 |
13 | POLAZZI Fabio | 63 |
17 | DOCKX Gert | 64 |
18 | KREDER Michel | 67 |
20 | ARMÉE Sander | 72 |
22 | DEGAND Thomas | 63 |
25 | DE VREESE Laurens | 78 |
27 | ZINGLE Romain | 67 |
29 | GODDAERT Kristof | 72 |
32 | NEYENS Maarten | 74 |
34 | DEVILLERS Gilles | 62 |
35 | PARDINI Olivier | 68 |
44 | KVIST Thomas Vedel | 68 |
51 | GOURGUE Benjamin | 62 |
52 | VAN MELSEN Kévin | 77 |